UCRL- 93404
PREPRINT

Fusing AI and Simulation in Military Modeling

Stanley A. Erickson, Jr.

Artificial Intelligence in Simulation Conference
Ghent, Belgium
February 25-28, 1985

September 1985

This is a preprint of a paper intended for publication in a journal or proceedings. Since
changes may be made before publication, this preprint is made available with the
understanding that it will not be cited or reproduced without the permission of the
author.



DISCLAIMER

This document was prepared as as account of work sponsored by an ageacy of the
United States Government. Nelther the United States Government nor the University
of California nor any of their employees, mskes any warranty, express or implied, or
assames any legsl linbility or responsibility for the accuracy, completeness, or useful-
ness of any information, apparatus, prodect, or process disclesed, or represents that
its ase weould mot infringe privately owned rights. Reference herein to any specific
commercial products, procesa, or service by trade name, trademark, mansfacturer, or
otherwise, does not necessarily constitute or mply its endorsement, recommendation,
or favoring by the United States Government or the University of Califorsia. The
views and opinlons of authors expressed herein do not mecessarily state or reflect
those of the United States Governmest or the University of California, and shall not
be msed for advertising or preduct endorsement purposes.



) FUSING AI AND SIMULATION IN MILITARY MODELING*®

Stanley A. Erickson, Jr.
University of Califormia
Lavrence Livermore National Laboratory
P. 0. Box 808
Livermore, California 94550

ABSTRACT

Military simulation can be significantly
improved through use of Artificiasl Intelligence
to simulate tactical decision-making. Our
project has served to test out many tentative
ideas on hov to accompligh this, including
unique architectures for both hardware and
sof tware, methods of eliciting clear rules from
multiple topic area experts in a chain of
command, how to make programming more effective,
and on ways of writing the AI modules. This
paper serves as an interim status report.

INTRODUCTION

The objective of this paper is to describe
the AI/Simulation project underwvay for the last
three years at Lawrence Livermore Nationmal
Laboratory. We wish to discuss the background
of the project, the four phases of work:
problem definition, conceptualization of the
solution, architectural design and the evolving
implementation of the testbed simulation, and
finally what was learned or concluded from each
phase. By necessity, things learned in the
latter stage, where concepts are put to the
test, influenced the earlier conclusions of the
first three phases, and a complete partition is
not possible. Nevertheless, separating out
these phases provides a convenient framework to
discuss the entirety of the project.

The work belongs to the genre of military
simulation, vhich is poseibly more prevalent
than any other type of simulation, but less
reported on, especially outside of contractor's
reports, vhich are often classified. Some
theoretical vork in military simulation has been
done, but the majority of the efforts in this
field have been devoted to solving specific
problems of military science and engineering
design. Excellent broad refersnces to the wide
variety of military simulation are the two
proceedings of symposia by Huber [1,2], and the
compendium of Hughes [3].

Fusing AI into military simulation is one of
the frontier areas of military simulation
research. Over the last 25 years, paralleling
the advances in computational capability,
military simulation has taken on more and more
aspects of reality. The initial simulations of
the early 1960's involved the flight of &

%This work was performed under the auspices of the
U.S. Department of Energy by the Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.

projectile or missile, and its closure on a
target. Later, multiple objects were included,
with the emphasis on the maneuvering of ons
vehicle in regponse to another’s motions. At
the same time, sensor systems, such as radar and
sonar, vere modeled, an effort vhich involved
the use of signal propagation and detection
models, signal processing, tracking algoritims
and the classification of targets according to
what electromagnetic or acoustic signatures they
presented. In tha 1970's, a great deal of
progress was made in modeling communications,
and in the latter part of the decade, in
electronic warfare, principally jamming and
counterdetection of signals by unintended
recipients. Most recently, interest has turaned
to tactics and strategy.

The first phase of the work was the problea
definition: specifically hov cen one overcome
the programming difficulty and other inadequate
mathods of representing tactical decisions. In
order to understand the problem, it is useful to
firet appreciate pre—Al mathods of representing
decisiommnaking, and the features of military
sinulation which generate the complexity causing
thage difficulties.

PRE-AT METHODS OF REPRESENTING DECISIONS IN
SIMULATION

Strategy and tactics have traditionally been
incorporated in simulations by using decision
trees or decision matrices, or in the case of
warganes or interactive simulatioms, by
utilizinog human actors to make decisions. Only
a minimal set of options can be incorporated
with decision trees or variations of them, and
there is a question with their use as to the
adequacy of the decisions.

Decision trees attempt to modél the time
flow of deciesiona and events id a simulation.
As shown in Figure 1, a decision tree consists
of a set of alternating decisions and simulation
events. An initial event can start off the
simulation, and then one or both sides in the
simulation make a decision as to vhat response
to make. Then the simulation moves forward,
incorporating the actions which result from
these decisions, until another significant event
occurs. At this point, the sides in the :
simulation make another decision. Because the
event which occurs is not immediately
predictable, either because of the complexity of
the situation or because of random varisbles in

" the sisulation, the designer of a decision-tree

based simulation must predict the complete set
of possible options and decisions at each
stage. For a lengthy simulation, this



represents & tremendous burden, Typical
exsuples of a decision tree type of problem are
games with random events, such as poker or gin
rummy. Poker has a short enough series of moves
and random events as to maks it possible to write
‘- programe to play the gsme. Gin rusmy, and mili-
+ tary simulations, simply have too many moves to
be realistically programmable.

Figure 1: The decision tree methodology for modeling

decisions in simulationsconaists of collecting and
organizing in temporal sequence all possible major
events and decisions, and then creating rules as to
what decision options are to 'be chosen after vhat
events occur.

Tricks used to write simulations using the
decision tree paradigm in complicated simulations
relate to the use of multiple decision trees,
corresponding to different phases of the gimu~
lation. Sometimes, with only a small number of
objects involved, a simulation can be broken up
into & sesrch phase, a closing phase, a weapon
launching phase, as examples. However, with
many objects, or with long phases such as would
be caused by objects capable of sophisticated
actions, such as maneuvering fighter aircraft,
even this device soon fails. Other modifications
include re-entrant trees in which the monotoni-
city of time is abandoned in the decision tree,
and the chain of events is allowed to close back
on itself at any arbitrary point. 1In this type
of decision tree simulation, the problem that
arises is defining which situations ars identical
and which are sufficiently distinct as to require
a vholly new branch of the tree. In simulations
with 1iterally bundreds of veriables, making this
1dentification becomes overvhelmingly difficult.

Decieion matrices, on the other hand, deal
vith snapshots of the simulation. If history of
the simulation is of no iaportance, and decisions
can be made solely on the basis of a reasonable
nunber of variables in the simulation, them those
variables can be translated into decisions for
each side. As 1llustrated in Figure 2, the
variables which enter into a decision matrix are
typically binary. Continuous or multi-valued
digcrete variables are turned into binary
variables by ueing thresholds: if x, a8 simulation
varisble such as altitude, is greater than x,,
then X, a decision tree varisble, is + (or true),
otherwise it is -.

Ye

ne

v sctions

Y-

Figure 2: The decision matrix methodology for
modeling decisions consiste of describing the state
of the sisulation in terms of a finite number of
variables, and then of creating a relationship
between the instantanecus state of the simulation
with the chosen decision.

One difficulty which arises with decision
satrices is the number that are required, and
the number of variables vhich are included in
sach. Too many variables in each situation make
it difficult to create the combinatorially large
nunber of options. One method used to alleviate
the combinatorics is to make hierarchies of
variables, in vhich lower levels of variables
are only used:in the evaluation if higher levels
of variables take on certain subsets of possible
values. However, this only reduces the pumber
of combinations by s order of magnitude in
typical situations.




Sometimes there is a major imbalance between .

the representation of decisions on the two sides
of the conflict. Typically the modeler's owm
side is better represented, as he knows or can
learn the details of his own side's tactics, and
the details of his own side's vehicle, weapon,
sensor and communication systems can be incor-
porated. When this is available, the own-side's
tactice can be adjusted to take care of the
details of these aystems, making their use
closer to optimal. Tactics and systea—tactics
interactions of the other side are less wvorked
on, and less well represented. This is often
referred to as the “dumb enemy assumption,” and
involves the enemy forces using simple attack
strategies, not maneuvering to their best
advantage, not allocating their firepower well,
or sometimes just serving as targets.

This situation leads to poor system choices,
for in most military situations, tactics strongly
influence the outcome of a conflict. Better
equipment does not necessarily imply better
results.

The use of human actors to play roles in a
simulstion has some advantagea but also a mumber
of serious drawbacks. Chance is an important
factor in conflict situations, and to understand
its influence it is good to have a statistical
number of replications of the simulation. With
human actors, each replication differs, as the

actors learn from the past ones, snd modify their

behavior. They almost never atick to the same
tactics. They get bored. Furthermore, human
actors impose running time limitations on the
aimulation. It cannot run too many times faster
than real time in order to allov the simulation
to seem real to the actors, vho are often
nmilitary officers playing the game to utilize
their experience.

Human actore also need a minimum amount of
time to make decisions, and this puts a
restriction on the mumber of plays that can be
accoaplished in a day. If one wants to do a
gengitivity study to determine the best value
for one or many parameters, it is simply not
feasible to use human actors and conclude
anything verifiable. Simulation with human
players 1s "insightful,”™ rather than being a
quantitative tool to design systems. It has
many uses, especially in training, but analysis
is not one of them.

The project that is discussed here was
initially created to experiment with a
combination of Artificial Intelligence, used to
model buman decision-making, and military
simulation, used to model the physical world.
Replacing a war-game-playing expert with a
var-game-playing expert system would alleviate
the problems found both in all-computer simu-
lations and i{n wvar games. Expert systems are
designed to deal with combinatorially complex
situations, and hopefully will provide much more
realigtic decision—making than decision trees or
decision matrices. Furthermore, they may be
able to run at several times real time, allowing
statistical numbers of replications to take
place with various values for parameter setas in
reasonable amounts of computer time. However,
as work has continued, the division of the
simulation code between AI and non-Al has grown

blurry, for several reasons. But first, a
discuasion of the topic of the simulation is in

order.
MILITARY SIMULATION FEATURES

There is no disputing the inherent com-
plexity of military operations. Whoever coined
the phrase, "the fog of war,” was speaking of
decision-making in s very uncertain, sosetimes
data-poor environment, with harsh time con-
straints, and 1imited replanning capability.

‘There are typically a large number of independent

decision-making entities, engaged both in taking
actions, and communicating to superiors and
subordinstes. The information handling problem
alone is immense, with information being combined
and compressed up the chain of cosmand, and plans
and orders being elaborated down the chain of
command. Commmication is not necessarily
correct, adequate, or timely, or even posaible.
Information on the situation may be incorrect,
oving to a limit on the operation of information

gathering (intelligence) units.

Besides these problems, referred to
collectively as C3I, for cowmand, control,
communication and intelligence, there are
difficulties concerned with the actual environ—
ment in which the operation takes place. Sensing
of the enviromment or of the vehiclea and vessels
(platforms) involved may be quite imperfect owing
to the distance between sensor and object, due
to obscuration either natural or man-made, due
to camouflage or deception, due to intermittency
of data collection, due to & limitation on the
bandwidth of the sensor, or due to jamaing. The
recipient of the information is faced vwith a
wore difficult than usual interpretation problem.

There are two general tasks for a decision
maker to perform, occurring at lower and higher
command levels. At a lover command level,
tactics is the name of the game. The operator
of a platform, or a sensor, attempts to use it
to accomplish some goal or goals, often with
multiple constraints. The operator of a
platform, say a sircrev or tankcrev, has a
ruleset which has actions for the platform as
the outputs. The operator of a sensor, say &
radar or a sonar, may have some actions to be
taken, such as aiming or frequency choice, but
the primary output is the sending of messages
based on received information. One impressive
state of the art simulation at this command level
is TAC Warrior, in vhich multiple maneuvering
aivcraft are simulated with all the details of
their motion and pilot control functionms.

At the higher command levels, information
alone is transmitted in and out via message
traffic. The job of the command level is to
decide what resources will be applied to what
mission; this is done with the expectation of
certain results. Each of these higher command
levels has a migsion or set of missions, and
attempts to satisfy them inm priority order. For
each typical situation, there are procedures to
be followed, which have been worked out in
advance based on practice and experience.

- Atypical situations have to be worked out in

real time based on more primitive expectation
models.



Thue thers are four generic tasks to
simulate with AI. One 1s the operation of a
platform, another is the compression of mensor
information. There also is a procedure
following behavior for allocation of resources,
and finally the most difficult, planning in
difficult eitustions.

After the probdlem definition effaort had
matured, it was possible to start to define a

solution: epecifically the use of an expert
system to represent each decision-maker. Rather

than attempt to make any theoretical conclusions
as to the workability of this idea, it was
decided to follow the universal approach of
uilitary eimulation groups, in fact most
simulationiasts, and define a prototype. We
vished to take a project which had the necessary
complexity, used our experience, and, 1if
successful, would provide useful practical
results, not just on hov to do simulations, but
useful in a specific area of military analysis.
We chose airborns ASW as the mission area.

THE AIR ASW TESTBED SIMILATION

This Livermore project had its origins in
earlier simulations here, specifically in a
helicopter—-sulmarine simulation. In order to
detect submarines, naval helicopters drop
patterns of sonobouya, which listen for the
submarine's noise. These patterns can be quite
varied, and different sonobuoys can hear and
then not hear, as tha submarine moves closer to
and farther from them. Figure 3 illustrates the
variety of signals which might be received in
such a process. Coping with this situation, and
planning for the improvement of patterns which
are having partial successes overtaxed the
capabilities of a decision tree arrangement used
for this task., It was decided that future
simulations may be even more demanding in the
area of tactica, and this wotivated the new
simulation project.

Byl sras

[

¢l N

o D

. A

’ A

. A

" A
Tims

Figure 3: As a submarine traverses a field or a
barrier line of sonobuoys, it creates a specific
pattern of eignals in nearby sonobuoys which must
be interpreted to calculate the submarine's track.
The track is then used to choose new locations for
more sonobuoys, hopefully at tighter spacings to
allow more accurate track generation.

The area of military operations chosen as
the testbhed for the Al/Simulation fusion
experiment was that of land-based aircraft
submarine surveillance. In this arena, sub-
marines are initially detected by a variety of
sources and sensors, then, sometimes, aircraft
are sent to the area of the detection to redetect
and further localize the sulmarine. The topic
waa chosen for a number of reasons: our ex-
perience vith sonobuoy simulations would be
usable; a naval airbase specializing in these
operations vas nearby and could serve as a source
of expertise; and the requisite degree of
complexity was assured [4).

One main source of complexity in this
situation is acoustic detection. Underwater
sound does not travel in straight lines, owing
to the variation of sound velocity with depth,
caused by the denaity increase with depth, and
temperature fluctuations caused by mixing and
solar heating. Currents also play a very
important role, as do the shape and texture of
the ocean bottom. In many areas of tha world's
major oceans, sound from a source near the
surface is refracted downward to great depths,
and then refracted upward to reach shallow
depths again, Thus a listener near the surface
could hear a close sound source, then not hear
it as he moved further away, then hear it again
as he moved yet further. The range of thie
resumption is from 15 to 40 miles (24 to 64
km.) If the sound source is loud enough, the
same pattern repeats itself, with the sound
recurring at twice, then three times the
original spacing, and so on until absorption and
spreading reduce its intensity to below the
detectable threghold.

Figure 4 shows how acoustic rays can bend down-
vard from the source, and then bend upwards
after having penetrated to great depths.

i

Figure 4: Sound is refracted downward hecause of
the temperature structure near the ocean surface,
and upward at deep depths because of the pressure
effect on sound speed. The result is a sequence
of shadow zones and convergence gones in which a
sound source such as a submarine is alternately
audible and inaudible.



When an airplane hears noise sounding liks a
submarine, it must make a series of determina-
tions. Is it actually a submarine? This
decision is based on prior detections of the
submarine, the presence of ships which might
sound like submarines, tha time-dependent
behavior of the sound, and many other factors.
Then the determination of the range can begin.
Is the sound from a nearby source, or has sound
been picked up after one or more refractions
from the source to vhat is called “convergence
zones.” This decision is related to the last
one. It may be from a distant loud merchant
ship, or a close~by submarine, or both of them,
interfering with one another.

Besides the complexity of the on-site
operations, there is a whole set of complex
decisions made even before the aircraft is
dispatched. 1Is there much likelthood of a
submarine out there, and just where is it to be
searched for? Why not use something else
besides an aircraft? Should the search begin
now, or wait for one of many reasons—weather,
aircraft availability, the hope for more
information on the contact, a higher priority
mission for the aircraft, and others.

The environment itself provides another
source of complications for the decision. Each
day the ocean is different, and must be inter-
preted. Collecting daily data for all the areas
of the ocean would be a monumentsl task, and
therefore when a contact occurs, estimates of
the ocean condition must be made, unless there
is some coincidental data available from nearby.

There is no question that this operational
area has enough complexity to require the use of
some AI techniques to model the decision-making
processes. Actually, as is the case in most
military simulations, a critical job in the
simulation design is deeciding what factors to
model, and what factors to approximate and what
factors to omit entirely. For the AI/SF project
we have a double task, what system features to
incorporate in the conventional part of the simu-
lation, and vhat decision-making to incorporate
in the AI portion. These two choices had to be
coordinated, and actually never reached a stable
set. One situation vhich arises in the modeling
of decision-making by experts is that those
modelers doing the work are not experts in that
application themselves, and therefore are not
necessarily able to predict in advance what are
the key features. Only the topic area experts
can do this. However, topic area experts are
not usuvally, and in our case not at all, versed
in modeling and simulation, so they are not
initially capable of advising on vhat features
are key and vhat are superfluous. It has been an
iterative process of key feature identification.

With the project context defined as well as
initially possible, we proceeded to design an
architecture, first only for the software, as we
initially had not conceived of the need for and
utility of a hybrid multi-machine hardware
configuration.

SIMULATION ARCHITECTURE

The determination of the architecture for
the simulation software was a more solvable
problem, The first year of the project was
spent in determining wvhat modular arrangements
were necessary to construct the simulation, and
in determining wvhat form the expert system used
to reprasent tactical decision-making should
take. While there have been modifications to
these structures, and the implementation of the
design has led to a relaxzation of uniformity of
structure, the main features of the design
remain as they were initially composed.

The single most important guiding principle
used to design the architecture of the software
was thig: copy the design that military oper-
ations follow as much as possible, both in
modeling hardwvare and decision-making. This is
a departure from earlier attempts at modeling.
Because of constraints om computation, memory
size, lack of data, or other reasons, simu-
lations have often had approximations in them
which correspond to no physically identifiable
phenomena., For example, in Army modeling,
because of the difficulty of modeling large
numbere of objects, & construct of the "forward
edge of the battle area”™ was used, meaning the
1line of contact between the two sides. Nowadays,
vith more powerful computers and voluminous data
capacities, individusl tanks can be represented
in large numbers in simulations. We attempt to
adhere to the latter formulation. In decision-
making, optimization algoritbms have been used
to direct fire, move troops, allocate resources,
control logistics, deploy defenses, etc. These
optimizations are based on very simple models of
the activity involved. Nowadays we can include
enough complexity in the models of the activities
that optimization techniques, such as linear
programming, do not apply, and we use instead
heuristic rules as the only possible replacement.
Our simulation project attempts to install these
heuristic rules inside an expert systea, as
opposed to inside a decision tree or other
deterninigtic structure.

This principle indicates that each physical
object be modeled by a block of code devoted to
itself. Thie method has been used before in
earlier simulations, but often simulstions
attempted to crosscut through objects, so that
functions determined the modular structure of
the simulation code. There would be a module
for moving all objects, one for detecting
objects, one for communicating, etec, Our
current architecture has an object represeating a
platform. There 1s a specific identifiable code
block for each airplane, submarine, airbase, and
other items. This concept is generalized into a
total object-oriented structure in the AI/SF
code. Each decision maker is an independent
object, each communicator is an independent
object, each sensor is an independent object,
and each comsunicates with others via messages

only.

It would appear that the idea of object-
oriented programming originated, possibly
separately, in the srea of military simulation,
before its appearance in the area of artificial
intelligence. The motivations for its use in



these two areas are similar but not identical.
Simulation is conveniently done in sn object-
oriented format because this format inherently
preserves the natural behavior of objects, the
natural partitioning of information between
objects, and the requirements for communication
as a part of the simulation. Object-oriented
languages in artificial intelligence arise more
from a desire for a good programming structure,
one which 1s convenient for many applications in
AI. It is not necessarily true that object-
oriented simulation is more conveniently pro-
grammed than a functionally oriented simulatiom.
This may certainly be true in those (unusual)
eituations where all objects ere quite distinct,
and require wholly different code for their
actions. Usually modern military simulations
have sultiple units with approximately the same
capablilities and activities, which could easily
be accommodated in a functionally based
simulation.

Functionally based modularization doee have
a role in an object-oriented aimulation. Reach
object is modularized, within itself, into
functionally useful divisions, such as mover,
sensor(s), weapon launcher(s), communicator(s),
decision msker, and so on, as appropriate for
the particular class of object. This second-~
level modularization is shown in Figure 5, which
indicates a separate parcel or page of modules
for each existent object.

Plstiorm 3
Pt Pinttorm 2
Ll Platiorm 1
[Sr— [Ssm—

= (= = EE
rlfed | o] [ [

Figure 5: Each object in an object-oriented
simulation may have a functionally divided
structure, counsisting of modules used to move,
sense, commmicate, make decisions, etc.

Moreover, as noted, this two~level modular-
ization creates an avenue for controlling the
information available to each decision maker.

In earlier styles of simulation, data about the
simulated world was kept in a database some~-
vhere. Special care had to be taken to prevent
a decision-making routine from accessing wore
date than it had a right to. It is important to
keep boundaries around the “perceived world
view" of each object which makes decisions, and
carefully control vhat crosses these boumdaries.
Thie allows us to perform another function which
is extremely important in military situatioms,
but which is often ignored in simulations: the
corruption of information. Exact information
about every object is available in the simu-
lation, and is needed to be able to compute what
actually physically happens. For example, exact
information on position, course, and speed is
used to update the position of each object at
time intervals. However, no decision-making
object knows the exact position, course or speed
of any mobile object, including the one which he
may be riding on. He may have nmavigational
sensors which read out his position, but these
are inaccurate to a degree which may be
important, for example in a rendezvous or
coordinated operation, or an intercept or weapon
launch., Alternately he may receive messages
from another site which is monitoring his
position via their sensors. This measurement is
posaibly inaccurate as well, and may be late in
arriving.

More fragile than self-knowledge is knowledge
about other objects, on the same side and the
other side. Often in earlier gimulations, which
recognized the importance of information
limitation in conflict situations, there were
two world views only. One side knew about
certain objects, and the othar side knew about
other objects, not necessarily an identical or a
disjoint set. However, with the rise in
attention being given to communication modeling
over the last decade, it became very clear that
not all platforms on one side possessed the same
information, and that this influenced the course

of events.

Communication between platforms or bases on
one side is often difficult or impossible.
Somatimes only short-range communication devices
are used, because long-range ones give awvay the
location or existence of the transaitting
platform. Thus wvhen two platforms physically
gseparate on divergent courses in order to
perform separate parts of a mission, or when one
platform leaves its home base, it may have its
communicated information frogen. All the vhile
it may be adding to its information set by using
its own sensors, but knowledge of what other
platforms on the same side learn is blocked from
it. For example, one plane may learn something
sbout a submarine's location, but it cammot tell
its partner over the horigzon to change his plan
wvithout possibly revealing himself.

We therefore have a multiplication of data-
sets in the wmodel. Each object may have some
information about each other object, or maybe no
information at all, This is a n-squared
process, growing as the square of the number of
objects, vhere the true world data base, which
contains only the exactly trus information about



the position and condition of each object, grows
only as n.

Other phenomena vary as n-squared or n also.
Communication possibilities vary as n~squared, as
any object can theoretically be equipped to talk
wvith any other. Vehicle motion and status
changes, such ag fuel condition, are n-linear
processes. These variations have an important
implication. S8imulations for naval and air
situations typically have many fewer, although
more complicated, objects than do land situ-
ations. What may be practical for the former
may not be practical for the latter. As the
number of objects grows, limits in processing
time may be reached, and an architecture that is
ideal for a small number of objects may be
totally unreasonable for a large number of
objects. Sampling techniques are often used in
land situation modeling to reduce the n-squared
processes. Only one object out of a number of
them may actually do surveillance in the
simulation, although in reality all would have
that capability. K-linear processes which occupy
a large fraction of the computation time may also
be accommodated by eampling. One example is
route plamning. Only one vehicle out of a group
may decide on a route, the lead one. It matters
little if each following vehicle follows the
exact route of the leader and maintains constant
spacing from its immediate predecessor.

Communication possibilities may grow as
n-squared, but actual net connections grow only
as n times its logaritim. Each object is
designated to communicate only with a certain
number of subordinates, staff, and esuperiors,
and that number does not grow with the total
number of objects. However the number of levels
increases as the number of objects does, roughly
as a logarithm, The communication hierarchy
exiets as an initial network, but as a situation
progresses, and aome objects drop out of the com—
munication net, it must be varied to accommodate
the changes and still keep functioning. Thus
one set of rules involves who to talk to in vhat
situation, as vell as wvhat messages to send.

The communication hierarchy is not the same
as the command hierarchy. An object which
reports to another certain object may not be
responsible for taking orders from it. In other
words, the information passing netwvork and the
planning network can be distinct. Other rules
tell an object whose directions to follow.

PROJECT EVOLUTION

We gained experience initially by building a
version of the code to run solely on a VAX,
using VMS-Interlisp with an overlay of ROSS
(RAND Object-oriented Simulation System) [5].
This proved to operate too slowly, using large
amounts of time inside ROSS to pass message
traffic in Engligh-like form from one object to
amother for each event. The next, and current
phase, involved adding a pair of Xerox 1108's to
the network to perform the AI portions of the
computation, wvhile leaving the mumber—crunching
computations to the VAX. LOOPS ia the software
package on the 1108s [6].

From both a hardvare and software point of
view, ve have a hybrid systea for our simumlation.
The hardvare architecture is shown in Figure 6.
The VAX runs PASCAL and is responsible for the
graphical output of the simulation. It does the
world ocean data bage manipulation and has
routines which perform the function of a human
navigator. For example, it examipes a map and
picks a course from point A to point B in a
near-optimal fashion. It can find the nearest
point of land, the first point of inmtersection
of a course wvith land, great circle routes, and
other functions: This navigation function is
exercised by a navigator object within the AI
machines. A typical navigation ocutput for a
submarine, as it appears on the graphics output
screen, 1s shown in Figure 7. The VAX also does
acoustic computations, and will be responmsible
for the upgrades of our communications network
model.

Figure 6: A hybrid computer system for AI/Simulation
work can coneist of one or more LISP machines, coupled
to a standard mainframe for more intensive numerical
computations. Graphics output 1s typically one of the
most demanding activities of the simulation and benefits
from a tight coupling to the mainframe. The version
shown here is that currently operational at LLKL.

The same philosophy is designated for all
databases in the simulation. The data ig
separated out from the remainder of the
simulation, and is accessed via specialized
routines. These routines and the database
constitute an object in the object-oriented
framework. This process ensures that the
databases will not be altered inadvertently.

These objects, the database manipulators, and
several other objects are referred to as servant
objecta or shadow objects, to distinguish them

. from objects which have a corresponding entity
in the real world which i1s being simulated. The
“timekeeper™ object might be considered most



Figure 7: The navigator object ueﬁes to locate
paths through the world oceans for ships and
submarines in the AI/SF simulation.

important, in that it controls the progress of
the simulation. All objects bave the same leval;
there is no hierarchy of objects, except for
inheritance. We allow objects to inherit
properties from generic objects. For example,
each aircraft of any sort inherits properties
from the generic aircraft and is an instance of
it. Thie is a programming conveniemnce, and is
facilitated in ROSS as well as LOOPS. An
aircraft inherits its motion module, and has its
own paramaters inserted into it, such as fuel
level and consumption rate.

For each new part of the code, we have to
make the decision as to whether to put it into
the VAX or into the LISP machines. So far there
* have been no ambiguous cases.

¢ We nov have & running code, with about 10

separate decision-making entities, each having
up to 40 rules. Our decision has been to keep
the individuals relatively simple for one
reason. There are a myriad of other questions
of architecture, module design, interobject
communication we need to answer, and to attempt
to build very sophisticated rulesets for
individusl actors would use up too much effort,
and interfere with other investigations.

Three areas vhere we feel we have learned
from the design and implementation work are in
the AI module design, in the human—to~human
procesa of developing the tactical knowledge
base in the context of multiple intemsely inter-
acting decision-msking entities, and in the use
of interactivity to improve prograsaing and
verification ease. Thase three are discussed in
sequence.

AI MODULE DESIGN

Besides structuring the code in a global
fashion, it has been necessary to structure the
modules themselves. Fortunately, there is much
experience available for such things as modeling
detection, motion, tracking, eensor integration,
etc. This is not so for the AI portions of the
task. It was necessary to come up with a rule
set structure, as well as a way to keep the AI
portions of the code manageable.

Rule-based systems tend to use large amounts
of time, as they grind through their rules
checking them for applicability. To solve this
problem we have instituted two arrangements.

The firet is the hierarchy of rulesets. Instead
of checking all rules, we packed them into
separate blocks, and do not invoke two blocks
simultanecusly, nor serially unless ons calls
another ome.

It would be best to imitate the natural
structure of rules that tactical experts have in
order to implement our expert system. However,
in our elicitation of rulea, we find that a
natural hierarchy does not exist, is not used,
or is not apparent to most decision makers.
Instead, it was necessary to impose one in order
to bring order to the rules of various experts.
Military ecience indicates that one starts a
military problem by deciding on a mission, after
exanining the situation in detail. Each wission
ie then decomposed into tasks, which divide into
operationa.

There 18 a discordance between what might
constitute a mission on one command level and on
a different level. The basic purpose is clear,
however. There should be a derivation of
successively more complicated directions for
actions from more global directions. To imitate
this we build a hierarchy of blocks of tactical
rules. This arrangement of ruleset blocks is
ahown achematically in Figure 8.

This however is not the principal means of
controlling the time usage by the Al modules. We
create for each decision-making object a separate
block of rules called an agenda. Essentially the
agenda gerves as a filter for its object. Rules
in the agenda are of the form:

If (condition A) then (invoke block X of object N)

One of the outputs of the rulesets is to add
rules to or remove rules from the agenda
belonging to its object. The agenda serves to
cause an object to scan its ruleset, rather than
have its scanning initiated by the clock at each

timestep.

The idea is not complicated. Out of each
object's decision-making ruleset we withdrav a
small subset of rules which contain key decisions
on when to make a change in plans or procedures.
An examwple might be to reevaluate a mission after
receiving a message from a euperior in the coa-
sand chain, or, more specifically, to break off
laying a pattern of sonobuoye to listen for
submarines 1f the first half of the pattern has
already gons "hot™ and has a detection.



Mulebiock|
Y
wvebustion | cariocs L
A A2
E
.
.
.
Hiersrohy releblock Uity rulsblocks

Figure B: Ruleset blocks naturally fall into two
groupings, one hierarchically connected, starting
with the agenda, and the other a set of utility
ruleseta, such as one to determine the nearest
point of land--which is used in several ruleset
blocks.

Many of these agenda items concern available
data, and are the result of temporizing de-
cisions. When a decision-making module is
invoked to replan, it may decide to do any of the
set of actions it is capable of. Alternately it
may decide to go into a wait state, in the
anticipation of better information arriving
temporarily. This will result in an item being
installed in its agenda, vhich says, when a
message from object M arrives [with information
Ij, reinvoke the ruleset. Alternately and more
frequently the agenda item will simply read,
‘wake me up at x o'clock, or more exactly

If (time > t,) then (invoke ruleget Z of
object N).

" Then the ruleset looks to see if it has gotten
more data, and 1if not, it may decide to act
anywvay. This form prevents permanent sleeping
‘of an object which has a decision to make.

The agenda is such an important item for
making the simulation feasible that it occuples a
major part in the architecture of the simulation.
As shown in the architecture diagram of Figure 9,
the agenda serves to monitor the perceived data~
base of the object it belougs to. This perceived
database is continually updated with corrupted
information via sensor modules from the world
database, the repository of true knowledge about
objects in the simulation. When an agenda rule
correctly fires, it kicks off a ruleset block in
the object which owne it. One poasible result
is for tha object's total ruleset base to modify
the agenda so that essentially the object is now
looking for something else importent, based on
what has just happened.

Iemtrammntation srer
: porasiveble
(nlovmation
Slamulmtor Porssptund r“
- .:.'.JJ "...'JI
a1

et [ T
[
shenges paraleshie ] Dadustions ]
= Events| ]
Imfividasl
Muttiple Agnda rels
pletiorp ASW AJ [ I.u

e
]

Figure 9: The architecture diagram shown here
emphasizes the intermal arrangement of code wmodules
relating to the AL portion of the simulation.

TACTICAL KNOWLEDGE BASE DEVELOPMENT

A number of interesting questions arise
during the proceas of eliciting expert knowledge
from tactical/allocation experts. Many decisions
are coordinated decisions. By this wve mean that
two or three command levels have long ago agreed
on vhat procedures will be followed in what
situations, and what constraints will be applied.
Thia happens in situations which are frequently
exercised. It also happens for anothsr less
obvious reason. Military officers move up the
hierarchy of ranks, and often take over command
of their previous post, having trained a deputy
to follow rules that they are accustomed to.

Thus the higher coamand level has an expert wvho
formerly was the expert at a lower level, and
who trained his replacement to use the same
procedures as he did. In such instances
coordination is marvelously eimple.

However, from an expert systeam point of view,
finding out wvho actually makes a decision is not
so easy. For procedure-following situations, it
matters little vhat level makes a decieion and
vhat level agrees, does not overrule, or
advises. However in the less frequent but much
more critical cases of unueual situstiomns, there
is no precedent for who is to meke exactly what
decision, and the expert system implementer is
the one who makes the decision. Possibly this
reflects the fact that in an unusual situationm,
the real decision maker is the one with the
strongest personality or most clear conception
of the situation, or some other aspect, rather
that a designated command level.

Another intriguing question arises from the
multiplicity of objects at the same level. If
there are a hundred planes flying at once in s
major tactical situation, there are a hundred
experts being inwvoked. Should they all be copies
of the same expert? If so, wa run the rigk of



relying on a less—-than-beet expert system, and
basing system design decieions on imperfect
tactice. The other side of the question says
that it vould be good to have a variety of
expert systems doing the same job, so that the
actual existing variety of tactics would be
employed. This means more work for the
elicitation group, vho must nov talk to more
than one expert for each type of platform. One
way to partially satisfy the desire for an
assemblage of experts rather that a set of
clones is to allow parameter variations, rather
than more substantial ruleset variations. For
example, one expert may respond to a contact
based on a signal just over the threshold of
detection, vhile another may wait until a
stronger signal is obtained. One expert may
wait for an hour for better data, wvhile another
may wait two. This randomization is not the
only one in the model, because of the necessary
randomization in detection processes, and may
not be even visible in the results.

Planning in the AI/SF project shares the same
problems as other AI planning systems. We have a
list of mission requirements, and try to satisfy
the firet one with a plan, such aa a course of
flight. Then the second mission requirement is
checked to see if it is satiefied automatically
by the chosen flight plan. If go, the next one
is checked.” If not, however, a variation is
tried vhich also satisfies the first misesion,
and vhich may or may not satisfy the second. If
several tries do not satisfy the second misesion,
it is ignored and the third one examined. Thie
continues until the mission liet is exhausted.
While this procedure does not have a grain of
intuition, it can produce an acceptable plan in
that it must satisfy the most important mission
to be considered.

INTERACTIVITY

There are several reasons for building inter
activity into the simulation framework. Ome is
certainly ease in debugging. Many programming
errors have been first determined by noticing
that an object is moving to a nonsensical place,
such as an aircraft searching for submarines
under the Greenland icecap, or landing on a port
rather than an airfield. It is much essier for
the eye to pick out which object is errant, than
to evaluate final destinations or any other
listed data. But there are more ways to utilize
interactivity for code improvement and testing
than by just observing the operations.

Each object has a viev of the world, his
"perceived world viev.” He makes his decisions
on what actions to take based on this "PWV,"
rather than on what actually happens in the
simulation's true world. By sisultaneously
displaying vhat the true world loocks like, in
terms of object positions and wmotions, and what
an object's “PWV" looks like, a discrepancy can
be observed, as it happens. For example, by
showing the actual position of a sulmarine, and
an sirplane's idea of vhere the submarina is, and
watching them diverge, we can see hov the air-
craft loses its target. This may lead to rapidly
seeing where a code error ia. If developed more,
it mey be a powverful tool for improving tactics.
In Figure 10 ve show how the architecture has to
be modified to take sdvantage of the comparisons
between the "PWV" and the true world.

10

Ditforsncms _
wth
aud
conjestues
Sula c.‘-'-'-
fostrmmsntetion ever
[~ Porcaputl Duuced
Trus Z worid world
| chancas
T Comupasd ::-
puceivable  pwcalvable Daduction
informstion  Informmtion werld
Agarde
jmes | (nclividust
Agwnds iy bae
Svnts
st _ |

Figure 10: Debugging the rulesets is aided by monitoring
the deduced world picture, for example where a pilot
thinks a target submarine is, and comparing it with the
true world view, i.e., the actual submarine location.

A sudden divergence of the two signals is a ruleset

problem.

A second way of using simultaneous views to
understand problems in the code, is to shov the
"PWV" of an object tvice, once from a normal
run, and once from a run in which the errors
have been zeroed out. Then if an airplane fails
to complete its observations, it is immediately
obvious if it is caused by too inaccurate
sensors, making too large errore in the received

data.

One problem with completely automated simu—
lations, that exists to a lesser extent with
interactive simulations, is the set-up time.
Before a simulation can be run, objects have to
be emplaced, given plans, and many parameters
set. This can be done interactively, with a
graphics screen, If the software is properly
created, plans for search pathe and buoy patterns
can be laid down. The use of menus can be used
for parameter setting, at some possible savings

of time,
CONCLUSIONS

We have learned that a hybrid architecture
for military aimuylations can be made to work
effectively, and that it is superior to use of a
single machine, Programming ease is improved by
having hardware tsilored to mumber crunching and
gymbolic manipulation, both of wvhich are
required in typical military simulations.

We bave learnad that an object-oriented
format arising from simulation requirements
mates wvell with the object-oriented formalism of
Al. In fact, it is not clear how any other
structure for the simulstion would permit this
fusion.

We have realized that the use of an agenda
facilitates expert systeam interaction with the
rest of tha system, and that graphical output ims
useful for the final stages of debugging even
the AI portions.



We have discovered a nev problem area in the
elicitation of expert system knowledge, the
difficulty of establishing command authority for
each specific decision in a multi-level chain of
command. We have developed a modus operandi of
dealing vith the ambiguity.

We have learned that geographic database
control is important to include iIn the initiel
design stage. Military affairs draw much of
their complexity from the environment
(geography, oceanography, weather) and this
database 1s called on extensively by the expert
systems representing tactical officers. We have

found it convenient to build interface modules to

handle inquiries to each database, and not to
allov any direct contact between Al modules and
‘databases. In a sense, we have bullt ocean-
ography experts, for example, to answer the
questions of a CO about ocean conditions.

We have learned the importance of dividing
uvp military combat units into several objects,
including at least a commanding officer, a
communicator, and a performer of operationms.
Trying to accomplish all functions within a
eingle database imposes umneeded complexity. We
also have appreciated the fact that appropriate
megeage delays need to be built into the
simulation from the outset., These delays are
critical in running a multiple machine
configuration effectively.

We have learned that English-like syntax is
not feasible on the machine we now have, and
that direct interaction of military officers
with the simulation needs to be mediated by LISP
experts familiar with the structure of the AL

modules.

n

We have learned the utility of involving
topic area experts in the initial planning cycle
for a simulation, for the purpose of defining '
key features.

At this point we continue to evolve the simu-
lation toward a more impressive demonstration of
the ability of AI to be useful in military
simulation, and to face problems caused hy
strains on computation resources, both in
decision-making and database manipulation.

References

1. Buber, Reiner K., ed., Systems Analysis and
Modeling in Defense, Plenum, Nev York, 1984.

2, Huber, Reiner K., et al., eds., Military
Strategy and Tactics—Computer Hodel:l.l_:g of
Land War Problems, Plenum, New York, 1975.

3. Hughes, Wayne P., Jr., ed., Military

Modeling, Military Operations Research
Society, Washington, D.C., 1984,

4, Erickson, Stanley A., "The Al/Simulation
Fusion Project at Lawrence Livermore
National Laboratory,” UCRL-90777, Livermore,
CA, 1984,

S. McArthur, Davidand Philip Klahr, "The ROSS
Language Manual,” F-1854-AF, Santa Monica,
CA, 1982,

6. Bobrow, Daniel B. et al., The LOOPS Manual
Extended Documentation, Xerox Corporation,
Sunnyvale, CA 1985.



